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Two-dimensional motions generated by Langmuir circulation instability of stratified 
layers of water of finite depth are studied under a simplifying assumption making it 
mathematically analogous to double-diffusive thermosolutal convection with 
constant solute concentration and constant heat flux a t  the boundaries. The nature 
of possible motions is mapped over a significant region in (8, R) parameter space, 
where S and R are parameters measuring, respectively, the stabilizing and 
destabilizing agencies in the problem. In the Langmuir circulation problem R 
measures the effects of wind and surface wave action, and S measures the stabilizing 
effect of buoyancy : in the thermosolutal problem, R measures the destabilizing 
effects of heating, while S measures the stabilizing effect of solute concentration. 
Effects of lateral boundary or symmetry conditions are found to be crucial in 
determining the qualitative behaviour. Complex temporal behaviour, including 
intermittently chaotic flows, are found under suitably constrained (no flux) lateral 
conditions but are unstable and not realized when these constraints are relaxed and 
replaced by periodic lateral conditions. Multiple steady states also arise, with those 
found under constrained lateral conditions losing stability either to travelling waves, 
or to other steady states when the lateral boundary conditions are relaxed. In  some 
regions of the parameter space, multiple stable nonlinear motions have been found 
under periodic boundary conditions. The multiple stable states may either be 
coexisting travelling waves and steady states (different from those found under the 
constrained lateral conditions). The existence of robust travelling waves may explain 
some field observations of laterally drifting windrows associated with Langmuir 
circulations. 

1. Introduction 
We treat an idealized problem that simultaneously models Langmuir circulations 

in the ocean and thermosolutal convection. 
Langmuir circulations in the near-surface layers of natural bodies of water are 

convective motions thought to  be driven by the action of the wind. These motions 
take a form approximated'by a set of parallel lines on the surface known as windrows. 
The general distribution of density in the ocean, created by vertical variations of 
temperature and salt, lead to a density stratification that is generally stable, with 
density increasing with depth. Mixing caused by turbulence, surface cooling and 
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other agencies introduced a t  the air-water interface create a layer adjacent to the 
surface, the ‘mixed layer’, having properties that  are nearly uniform with depth. 
Observations of downwelling motions associated with Langmuir circulations indicate 
sizeable vertical transport and suggest that  the phenomenon is one of the significant 
mixing mechanisms acting in the mixed layer (Langmuir 1938; Weller et al. 1985; 
Thorpe 1985; Weller & Price 1988; see Leibovich 1983 for other references to 
observational data). 

According to a theory proposed by Craik & Leibovich (1976), the vorticity 
deformation (of vorticity usually generated by the surface wind stress) caused by the 
particle drift in gravity waves can lead to motions of the Langmuir circulations 
(abbreviated henceforth as LC) type by inducing a mechanical instability (Craik 
1977 ; Leibovich 1977 b) .  The theory deals with an averaged set of equations in which 
only the rectified effects of the wave motion appear (in the form of the Stokes drift 
current). When the water column has a statically stable density stratification, the 
destabilizing tendencies caused by the wave-current interaction are resisted by the 
stabilizing action of buoyancy. Under these circumstances, the mathematical model 
describing such motions bears a close resemblance to the model usually used to 
describe thermosolutal convection in a system with unit Prandtl number (a) heated 
from below and having solute concentration decreasing upwards. In  fact, when the 
gradient of the Stokes drift engendered by the surface gravity waves is a constant 
and density variations arise from temperature variations only, the field equations 
governing Langmuir circulations and thermosolutal convection (with a = 1 )  are 
identical (Leibovich 1983). The boundary conditions natural to the Langmuir 
circulation problem are different from those customarily applied to thermosolutal 
systems, although they are compatible with a physically reasonable thermosolutal 
problem. 

In this paper, the dynamics of Langmuir circulations are explored with particular 
emphasis on circumstances having strong buoyancy effects. Under these conditions, 
stability is first lost to overstable motions. The mechanism leading to oscillations 
may be inferred by analogy with like behaviour in thermosolutal convection and 
other unstable systems of double-diffusive type. The essential mechanism was first 
identified by Stern (1960), and arises when the destabilizing agent (temperature in 
the thermohaline problem and momentum in the LC problem) diffuses more rapidly 
than the stabilizing agent (salt in the thermohaline problem and temperature in the 
LC problem considered here). Convection that fluctuates with time is expected to 
lead to weaker mixing effects, and so it is of particular interest to know whether the 
fluctuations appearing at the onset of convection persist when the system is further 
destabilized. Thus, the chief concern of this paper is the course taken by the system 
when conditions are not close to marginal and nonlinear effects dominate. 

These issues are explored for a layer of water of finite depth and infinite horizontal 
extent, bounded above and below by an isothermal plane surface. A constant stress 
(due to wind) is assumed to be applied at the top boundary in a direction parallel to  
that of the Stokes drift of a statistically stationary and horizontally homogeneous set 
of surface gravity waves. A steady non-convective equilibrium solution to the LC 
problem exists with a unidirectional current in the direction of the applied surface 
stress and having constant stress through the water column. Two-dimensional 
perturbations of this system of roll form (invariant in the direction of the Stokes drift 
current) are examined which leave the temperature and stresses unchanged at  the 
top and bottom boundaries. These boundary conditions model a stratified layer 
adjacent to the surface and bounded below by a deep thermocline with a much 
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stronger density gradient. So that we may establish as close a connection to double- 
diffusion problems as possible, we assume a constant Stokes drift gradient. The 
problem that we solve then may be interpreted also as a thermosolutal problem with 
salt concentration maintained a t  fixed (but differing) values a t  the horizontal plane 
boundaries, and constant vertical heat flux specified there (with CT = 1,  and ratio of 
salt to heat diffusivity, 7, equal to 1/6.7, which is the inverse of a nominal molecular 
Prandtl number for water). 

Moore et al. (1983) and Knobloch et al. (19866, abbreviated henceforth as K)  
consider the nonlinear dynamics of the double-diffusion problem described in the 
previous paragraph for several values of cr and r ; but with constant temperature 
rather than constant heat flux prescribed on the bounding planes. This is a common 
choice for thermosolutal problems, since the linear dispersion relation is algebraic, 
and linear eigenfunctions may be found by inspection. We refer to this problem as 
‘ideal double-diffusion’ (or IDD). Their work is intriguing since it shows the 
existence of period-doubling bifurcations in the solutions of the full partial 
differential equations governing a well-known problem in fluid mechanics. Fur- 
thermore, i t  indicates that  a low-dimensional model, a system of five ordinary 
differential equations, provides a surprisingly faithful qualitative reproduction of a 
wide range of very complicated temporal behaviour found in fully resolved numerical 
solutions of the thermohaline problem. The five-mode set, originally derived by 
Veronis (1965) and explored in detail by da Costa, Knobloch & Weiss (1983), may be 
regarded as describing the time evolution of the coefficients of a minimal Galerkin 
truncation. The minimal truncation and the full system both reveal increasingly 
complex temporal behaviour for sufficiently large salt concentration gradient (the 
stabilizing agent, measured by a Rayleigh number S) as the destabilizing driving 
force (temperature difference, measured by a Rayleigh number, R) is increased. 
Depending on S ,  the possibilities include periodic time dependence, period-doubling 
bifurcations, period-doubling cascades to chaotic motion, and period-halving 
bifurcations. All of these possibilities lead, for suBciently large R, to steady 
convection. A number of these features had been reported earlier by Huppert & 
Moore (1976). What is particularly surprising is the qualitative agreement between 
the dynamics of the minimal truncation and that of the full system, since in other 
fluid-mechanical systems (see, for example, Curry et al. 1984, or Marcus 1981) it  is by 
now well established that the dynamics of low-order truncations is typically incorrect 
in most essential respects except near onset. 

Given the similarity between this problem and our own, the findings of Moore 
et al. (1983) and K encouraged us to hope that a correspondingly simple model already 
explored by Leibovich (1985), Moroz & Leibovich (1985), and Moroz (1985) would 
capture the essential behaviour of the Langmuir circulation problem far from 
equilibrium. This turned out not to be the case. Although our five-mode truncation 
predicts bifurcation sequences similar to that of K, including period-doubling 
cascades to chaotic states, our fully resolved solutions with periodic sidewall 
boundary conditions show no period-doubling bifurcations or chaotic motion. The 
only time-dependent asymptotic states found are single-frequency periodic motions 
arising from the Hopf bifurcation. These periodic motions may exist in the form of 
either standing or travelling waves (or both forms coexisting). Standing waves alone 
are found for values of S at which the Hopf bifurcation is supercritical. At somewhat 
larger values of S, the Hopf bifurcation is to  travelling waves and is found to be 
subcritical. Based upon general considerations (apparently first derived by Shechter 
1976, see also Golubitsky & Stewart 1985) neither travelling waves nor standing 
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waves may then be stable for very small amplitudes. The travelling wave solutions 
emanating subcritically from the Hopf bifurcation appear to stabilize through a 
turning point and lead to robust finite-amplitude travelling waves. When both the 
travelling and standing waves branch subcritically, there is the possibility that both 
forms of solution, unstable for very small amplitudes based on Shechter’s work, may 
each stabilize through turning points and lead to coexisting, stable, finite-amplitude 
solutions. We have found an example of this. 

If the symmetries imposed in the works on IDD cited above, which require the 
lateral cell boundaries to be vertical, stress- and flux-free, are enforced, then we still 
find that the five-mode truncation fails to predict the observed course of events. We 
explore the effects of requiring this symmetry in the LC problem. We find no period 
doubling in this case, and less robust chaotic behaviour, but we do find regions of 
temporally complex dynamics. This includes, in addition to periodic motion with a 
period increasing smoothly with R, quasi-periodic motion with two incommensurate 
frequencies, two-period frequency-locked motion, chaos which succeeds a two-period 
frequency-locked state, and steady convective motion. The chaotic solutions appear 
to arise by the intermittent ‘scenario’ that  has been described by Pomeau & 
Manneville (1980) : here a periodic orbit is irregularly interrupted for irregular 
periods of time by aperiodic motion, with the periodic motion reforming in between 
the periods of bursts of aperiodic behaviour. In  addition to  losing complex temporal 
behaviour, the steady states found under constrained boundary conditions are found 
to lose stability to different steady states, or to nonlinear travelling or standing 
waves, when this symmetry is not imposed. 

The doubly-periodic flows which arise in our LC and non-ideal double-diffusion (we 
use LC to refer to either) problems stem from degenerate points in parameter space 
where the flow is simultaneously marginally unstable to perturbations with two 
different wavenumbers and distinct frequencies. This possibility does not arise in 
IDD problems previously considered in the literature (with the exception of Nield 
1967, who considered the linearized double-diffusive stability for a wide range of 
boundary conditions). 

Some of the consequences of relaxing lateral boundary conditions in the ideal 
thermosolutal problem have recently been considered by Knobloch et al. ( 1 9 8 6 ~ ) .  
They find that the periodic oscillations ensuing from the Hopf bifurcation under 
constrained boundary conditions are unstable to travelling waves when general 
periodic conditions are imposed. Furthermore, they show the possibility of a 
degenerate Hopf bifurcation in the ideal thermosolutal problem under these lateral 
boundary conditions. Knobloch (1986) shows that, in the neighbourhood of this 
isolated point in parameter space, quasi-periodic motion with two and three 
independent frequencies can develop from interactions between travelling waves and 
standing waves, all with the same wavenumber, by successive bifurcations. This 
picture resembles one that we find here under constrained lateral boundary 
conditions, but in our case it arises from interactions between modes having distinct 
wavenumbers, as well as distinct frequencies. 

It appears that  spatially constrained configurations may give rise to flows of 
considerable temporal complexity : when spatial constraints are released, the system 
may trade temporal complexity for an increase, albeit a mild one, in spatial 
complexity. The powerful effects of stringent constraints have already been alluded 
to by Moore et al. (1983) and by K. 

There are a number of reports indicating that the windrows (presumed to be) 
associated with Langmuir circulations sometimes drift at right angles to the wind 
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direction (see, for example, Van Straaten 1950; Meyer 1969; Thorpe & Hall 1982, 
1983.) The simplest cause for such a drift is a large-scale surface current having a 
component normal to the wind direction. The drift observations by Thorpe & Hall 
seem to be due to such a current. The travelling waves found here offer another 
possible explanation, and one that should be easy to distinguish observationally. 

Section 2 gives equations for Langmuir circulations, and describes the problems we 
wish to model. Linear stability characteristics relevant to this paper are also given 
in this section. Simpler models obtained for the LC problem by truncations of 
Galerkin expansions are discussed briefly in $3. These comprise truncations to five 
Galerkin modes, leading to dynamics with period-doubling cascades resembling those 
found by da Costa et al. (1983), as well as truncations to twenty and to thirty-eight 
modes. By the nature of their construction, these low-dimensional models have the 
potential to represent the dynamics only when the motion is subjected to constrained 
boundary conditions. Even then, only a limited number of qualitative features of 
these simplified models can be related to the solutions of the partial differential 
equations. The low-order truncations tend to yield period doubling not produced by 
the partial differential equations. As the number of terms, M ,  included in the 
truncation is increased, however, period doubling is deferred to larger values of S ;  in 
this sense the truncations improve as M is increased. 

We present numerical results for motions subject to periodic boundary conditions 
in $4, constrained boundary conditions in $5 and conclusions are placed in $6. 

2. Problem statement and linearized stability 
We formulate our Langmuir circulation problem in this section, followed by a 

survey of the results of the linear stability analysis that are needed in this paper. 
More complete stability results for the LC problem may be found in Lele (1985). 
Corresponding information for the ideal thermosoiutal problem may be found in 
Baines & Gill (1969) ; thermosolutal convection with other boundary conditions is 
treated in Nield (1967). 

2.1. Langmuir circulations in a layer of finite depth 
Craik & Leibovich (1976) assume the existence of gravity waves on the surface of a 
water body; the waves are assumed to be irrotational and to have fixed and 
prescribed characteristics. Rotational currents, usually taken to  be generated by a 
fixed surface wind stress applied in the direction of wave propagation, are assumed 
to be weak compared with typical particle speeds of the wave motions. Wind- 
generated motion generally approximates to these assumptions. (Langmuir cir- 
culations may be supported by currents generated in other ways, provided waves are 
present. An interesting example is due to Craik (1984) who showed that circulations 
can exist in the absence of wind, with the current needed being the second-order 
Eulerian mean flows created by slow viscous decay of a surface wave field.) If a 
representation embodying these assumptions is substituted into the Navier-Stokes 
equation and followed by averaging to eliminate wave-induced fluctuations, 
equations for the mean motion are produced which form the basis for a theory of 
Langmuir circulations. Buoyancy effects due to temperature variations can be 
incorporated (Leibovich 1977 b ) ,  using a Boussinesq approximation, and this 
extended set is adopted for the present study. This set is the ordinary Boussinesq 
approximation, with an additional apparent force due to the interaction of the waves 
and mean-flow currents; this force, expressed per unit mass, as u , x o  (Craik & 

16 F L M  I98 
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Leibovich 1976; Leibovich 1977a), where us is the (vector-valued) Stokes drift of the 
water waves, and o is the vorticity of the mean current. Here 'mean' refers to an 
average over timescales comparable with a period of the water waves ; this focuses on 
motions, time-dependent in general, which evolve on timescales long compared with 
the characteristic period of the waves. 

We consider a layer of water of depth d and infinite horizontal extent. The layer 
is bounded above by a free surface on which water waves with fixed, horizontally 
homogeneous characteristics (in a statistical sense) propagate, generating a Stokes 
drift in the x-direction ; this drift will, by virtue of the assumptions concerning the 
wave field, depend on depth only. We take the plane z = 0 to  be the mean free 
surface, and the lower boundary of the layer is taken to be the plane z = - d .  A 
constant stress, pu:, is assumed to be applied (by the wind) in the x-direction across 
the plane x = 0, and the temperature of the water is held at  a constant level T = 0 
there ; and it is assumed that the lower plane is maintained a t  a cooler temperature, 

A possible equilibrium solution to the governing equations is the conduct,ive 
T =T(O)-AT. 

temperature distribution 
T(z)  = T(0) + (AT/d) Z,  

leading to a linear (stable) density stratification, and a rectilinear constant stress 
(Couette) flow in the x-direction, with speed 

U ( z )  = (U",V,) z+ u,. 
Here vT is the kinematic (eddy) viscosity of the water, assumed constant. If the plane 
x = - d  were a no-slip rigid wall, then U ,  = ( u : / v T ) d .  This is appropriate for 
laboratory experiments in wind-wave tanks, but we wish to  consider a model in 
which the constant momentum flux continues to  be maintained through the layer, 
but in which the speed at the lower boundary is not directly controlled. We have in 
mind that our layer overlies a much deeper and heavier water body. The density 
difference is supposed to be so large that vertical motions of the interface may be 
ignored. The momentum flux through the upper layer is transmitted through to the 
underlying fluid, but we suppose that perturbations to this stress at z = -d ,  caused 
by any non-rectilinear perturbations which may exist in the upper layer, may be 
neglected. Thus perturbations to the basic state are considered stress-free at both 
upper and lower boundaries. Note that stresses are not related to the Stokes-drift 
gradient, and that this may have a non-zero gradient a t  z = -d .  The presence of a 
density interface introduces the possibility of internal waves, but these are not 
considered here. Since surface gravity waves and internal waves decouple (Lamb 
1932) to lowest order when the lower layer is of great depth compared with the upper 
layer, they may be considered independently, and the presence of a density interface 
on the surface waves may be neglected. 

We assume that variations in the x-direction are ignorable, and introduce a stream 
function II. to account for the velocity components, v and w, in the (y,z)-plane. 
Dimensionless variables for the perturbed system are adopted as follows, where the 
asterisk identifies dimensionless quantities : 

d 2 t * ,  u = U(z)+-u*(y*,z*,t*), u: d 
(y, 2) = d(y*, z * ) ,  t = - 

V T  V T  
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When substituted into the equations in Leibovich ( 1 9 7 7 ~ )  this scaling leads to the 
following dimensionless equations (see also Leibovich 1983) : 

@+--V*2)V*2$* = Rh*(z*)--S-+ au* ae* J($*,V2$*), ay* a p  

(&-V*')u* = p+ a$* J*($*, u*), 

where V*2 is the Laplacian and J *  the Jacobian with respect to (y*, z * ) ,  

and 

J*( f g )  = a9 af a9 
ay* ax* az* ay*> 

aT , T = - - ,  
ui  d4 au, /3gATd3 

R=-- ( O ) ,  S = ___ 
vg a2 4 VT 

where /3 is the coefficient of thermal expansion, g is the acceleration due to gravity, 
and aT is the (eddy) diffusivity of heat, and we have written the Stokes-drift gradient 
as 

au, au, 
aZ - ( 2 )  = g (0) h*(z*): 

so that h*(z*) is its dimensionless form. This set is identical to that governing two- 
dimensional thermosolutal convection (with Prandtl number CT = 1) if h*(z*) is set to 
unity. The parameters R and S are identified with the thermal and solute Rayleigh 
numbers in the thermosolutal problem, and T ,  which in the LC problem is the inverse 
Prandtl number, is identified with the ratio of solute to heat diffusivities: 
furthermore, temperature perturbations 6* correspond to solute concentration, and 
the x-momentum perturbation u* corresponds to  temperature perturbation in the 
thermosolutal problem. 

We now drop all asterisks and consider only dimensionless variables. We also set 
h(z) = 1 ,  thus specializing the LC problem in such a way as to associate it with a 
thermosolutal problem. The approximation of constant Stokes-drift gradient implies 
a layer depth d small compared with a representative wavelength of the surface wave 
field. Thus the equations to be considered in this paper are 

Boundary conditions a t  the top and bottom of layers, consistent with the model 
LC problem posed, are 
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These correspond to a thermosolutal problem with stress-free boundaries, constant 
solute concentration and constant heat flux at the boundaries. Lateral boundaries 
are taken to be a t  y = 0 and y = L and two forms are used: 

(B)  +(O, 2) = +(L, z ) ,  U ( 0 , Z )  = u ( L  4 ,  e(o, 2) = w, x ) .  ( 5 )  

Conditions ( A ) ,  corresponding to vertical zero-flux boundaries, are a special case of 
conditions (B) ,  which merely require periodicity of the flow with period L. We refer 
to ( A )  as ‘constrained’ and ( B )  as ‘unconstrained’. 

2.2. Summary of linear stability for Langmuir circulation and for non-ideal double 
diffusion 

Stability of normal modes in this problem must be determined by solution of an 
eighth-order ordinary differential system, leading to a transcendental characteristic 
equation. The problem was treated by solving the differential system directly by a 
Galerkin method using basis functions constructed from Chebyshev polynomials : 
details of the numerical method, together with convergence and accuracy tests, are 
given in Lele (1985), where results for variable Stokes-drift gradient and in layers 
bounded below by a rigid no-slip surface may also be found. 

The LC stability problem with boundary conditions (3) has,for all values of 8, zero 
critical wavenumber. The critical value of R is 120.0. These results had previously 
been found by Nield (1967). Although the limit as the wavenumber k + 0 corresponds 
to the critical conditions, the limit k = 0 corresponds to an infinitesimal disturbance 
with no vertical motion. To realize vertical motions, a non-zero wavenumber is 
required. We are thus led to suppose that some agency (lateral boundaries, or a 
limited lateral extent of an imposed surface wave or surface stress field) exists that 
serves to quantize the wavelengths that can be realized by the system. With a lateral 
extent of L ,  only the wavenumber k = 2n /L  and its harmonics, with wavenumbers 
that are integer multiples of the wavenumber of the fundamental, can be fitted into 
the domain. The ‘cell’ or ‘roll’ aspect ratio (ratio of lateral cell dimension to its 
height) is q-l = 5, and it is convenient to work with q( = k / n )  rather than L.  For 
q = 1, the cells are square, q < 1 corresponds to  wide cells, q > 1 to  narrow ones. 

We deal only with values of 7 = (6.7)-’, corresponding to a nominal molecular 
Prandtl number of 6.7 for water. Fixing first q, then S ,  we calculate the critical value 
R, of R. For values of q < 0.4, onset of instability is to  monotonic disturbances. 
Searches are made for a range of S up to 500 or greater in all cases. As q increases, 
overstable modes arise for the larger values of S in the search range, with the 
switchover occurring a t  S = SD(q): SD(q) decreases with increasing q, and at q = 1, 
SD x 78. At SD, the frequency of the marginal overstable modes vanishes. The 
variation of SD with q may be inferred from figure 1, in which R, is plotted against 
q for several values of S. The branch with onset to monotonic convection is labelled 
M, that for overstable motion is labelled H. Notice that, a t  least for the range of S 
shown, the minimum critical R for overstable motion occurs in a range of q between 
0.75 and 1.  

For a fixed value of q, the dependence of R, on S is represented, to a good 
approximation, by a pair of straight lines as in ideal double diffusion. The ideal 
problem, however, is exactly represented by a pair of lines; as q varies, each member 
of this pair remains parallel. Motion in a periodic domain characterized by a value 
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FIQURE 1 .  Variation of onset conditions with q (wavenumber/x) for various values of S. Portions 
of curves labelled M lead to monotonic convection, those labelled H to overstable convection. The 
value of SD for a given q may be estimated from this figure. 

of q = q l ,  admits disturbances with q = nql for any integer n 2 1.  Thus the system 
may be unstable to harmonics of the fundamental wavenumber, and the possibility 
exists that multiple bifurcations can exist a t  points where the fundamental and one 
of its harmonics, or two distinct harmonics of the fundamental, with distinct 
eigenfunctions and frequencies, are simultaneously marginally unstable. That this 
does happen is shown in figure 2, on which the transition curves in the (S, R)-plane 
are plotted for q = 0.5n, n = 1,2,3.  I n  this figure, the lines labelled M n ,  with n = 1, 
2, or 3, represent the transitions to monotonic convection for modes with n = 1, 2, 
or 3, and the lines Hn, n = 1 ,  2, or 3, correspond to transition to overstable 
convection via a Hopf bifurcation for modes n = 1,  2, or 3. For purposes of reference, 
the straight-line data fit for H1 is given by RH = 1.15S+368, the fit for H2 is RH = 
0.85S+692, and that for H3 is (approximately) RH = 0.73S+ 1624. The monotonic 
convection limit M1 is fitted by RM = 1.62S+ 183, M2 is fitted by RM = 3.938+459, 
and M3 by RM = 5.26S+ 1174. 

For a given mode n, the lines M and H intersect at some point, where a multiple 
bifurcation occurs: this point, SE, separates the plane into two regions, S < S:, 
where the basic state loses stability to monotonic convection, and S > SE, where it 
loses stability to convection periodic in time. Thus, for the fundamental wavenumber, 
n = 1, S,D = 394. Since the lines M n ,  for n > 1, lie above M1, transitions to monotonic 
convection in this system always occur for mode 1, so that monotonic convection is 
possible for S < 394. At S = 1080, the Hopf lines H1 and H2 intersect, with H1 lying 
below H2 for S < 1080 and above for S > 1080. Thus, for 394 < S < 1080, the system 
loses stability to time-periodic convection corresponding to the fundamental 
wavenumber, mode n = 1, but for a range of S exceeding 1080, it first loses stability 
to time-periodic convection with twice the wavenumber. The Hopf lines H3, H2 
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FIGURE 2 .  Linear stability for Langmuir circulations illustrating the possibility of multiple 
instabilities. Lines labelled Mn, with n = 1 ,  2, or 3 represent transitions to monotonic convection 
for modes having p = n/2. The lines Hn, n = 1, 2, 3 represent transitions to overstable motions via 
Hopf bifurcations. A t  intersection points, multiple instabi1it)ies are possible. 

intersect (off the graph) a t  around S = 7340, so that mode 3 succeeds mode 2 as 
linearly most unstable mode a t  this point. Thus, the stability diagram is made up of 
a series of (nearly) straight-line segments, drawn with a heavy line in the figure. At 
each corner of the heavy line, multiple instabilities arise. Although the corner a t  
23: corresponds to zero frequency when approached either from above in S (through 
overstable conditions) or from below (monotonic conditions), the remaining corners 
correspond to two distinct frequencies. Thus, a t  the intersection of Hi  and H2, for 
example, the frequencies differ by a factor of about 4. 

The nonlinear evolution of unstable modes will be traced in remaining sections of 
this paper, and the interaction of modes with two different wavenumbers will have 
important consequences. 

2.3. Global measures of the disturbances 
We have elected to characterize the results of numerical computations of the 
nonlinear system evolution to  be presented in subsequent sections of this paper by 
either local variables (such as the value of $ at a particular grid point as a function 
of time) or by global variables such as net heat flux across the surface z = 0 or kinetic 
energy of the convective motion. Of these global measures, we find a dimensionless 
measure of the surface heat flux, the Nusselt number, 
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to be convenient in the LC problem. The angle brackets ( f )  here imply the 
horizontal average L 

( f )  =;/ 0 fdY. 

I n  the non-ideal thermosolutal problem, this corresponds to the salt flux a t  
Since au/az vanishes a t  the boundaries, we do not have an analogue of a Nusselt 

number for the u-variable. Instead, we used a scaled value of the horizontally 
averaged surface momentum perturbation 

= 0. 

A(t) = K(U(Y> 0, t)), (7) 

and take K = 2 / A z ,  where Az is a z-mesh spacing in the numerical method, as a 
convenient scaling factor. 

3. The truncated systems 
We can compare the behaviour associated with the partial differential equations 

for the constrained LC problem to that associated with low-order systems of ordinary 
differential equations by writing 

I c o r n  

$(y,z,t) = X X am,(t) sinmqxy sinnxz, 
m-1 n-1 

m m  

u(y, z,  t )  = C C bm,(t) cosmqncy cosnm, 

0(y, z, t) = C C dmn(t) cosmqxy cosnm, 

m-0 n=O 

m o o  

m=o n=l 

and substituting into ( 2 )  to obtain an infinite system of equations for the time- 
varying coefficients amn(t), bmn(t) and dmn(t). These expansions satisfy the relevant 
boundary conditions, and thus constitute one possible Galerkin projection. We shall 
concentrate on three truncations of this system, involving 5 ,  20 and 38 modes. 

The lowest-order non-trivial truncation (meaning one permitting nonlinear effects 
to  distort the horizontal averages of u and 0) is obtained by retaining one mode only 
in the expansion for $: all(t); and two modes each in the expansions for u :  blo(t), 
bol(t), and for 0 :  d,,(t), do2(t). If we relabel [all(t), blo(t), bo,(t), dll(t), dO2(t)l by 

where t = t* /z2( 1 + q2) ,  and introduce 

then we obtain the set of equations: 

[: 4 9  [ 1 1.1 ci = -a+rb-sd, b = -yb+a --- 6 = w --+ab 
(9) 

d = -.rd+a[l-el, C = w[-~e+ad] J 
which was originally derived by Leibovich (1985) and analysed by Moroz & 
Leibovich (1985, referred to hereafter as ML). 
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n M, H, R:: 8: 
1 R = 1.64S+ 187.8 R = 1.18S+377.8 863.6 410.8 
2 R = 4.12S+480.6 R = 0.94Sf718.6 789.8 75.2 
3 R = 5.70S+ 1269.4 R = 0.84S+ 1776.0 1863.4 104.3 

TABLE 1. Stability boundaries for wavenumbers q = 0.5n for 7 = 0.15, as given by the five-mode 
model. M, denotes onset of monotonic convection, H, denotes onset of oscillatory, overstable 
convection, (R:, 8:) denote the intersection points of the H, and M, boundaries. 

This system closely resembles (differing only in the values of the coefficients) a five- 
mode model for thermohaline convection with unit Prandtl number, originating with 
Veronis (1965) and more recently studied by da Costa et al. (1983). 

There are a maximum of five possible equilibrium states, depending on the various 
parameters; they are obtained (ML) by substituting the real roots of the quintic 

r 57 l } = O  
R(%+U2) 7 2 + a 2  

into the vector 

Thus the rest state (a ,  b,  c ,  d,  e )  = (0, O , O ,  0,O) is always an equilibrium state, and the 
point symmetry (a ,  b,  c,  d,  e )  H ( - a ,  - b,  c ,  - d ,  e )  ensures that the remaining finite- 
amplitude states occur in pairs. 

We can study the stability of the rest state by seeking solutions proportional to 
eAt, where Re ( A )  > 0 indicates instability and Re ( A )  < 0 indicates stability. When 
A = 0 monotonic convection obtains, while for h = f io overstable convection 
obtains. In addition a multiple bifurcation A = 0 (twice) is possible where these two 
stability boundaries intersect. Table 1 shows the stability boundaries for monotonic 
(M,) and overstable (H,) convection for 7 = 0.15 as functions of q = 0.5n, for n = 1, 
2,3. Also shown are the points (SF, R:) of intersection of H, with M,. The agreement 
between the linear stability characteristics of the five-mode system and the partial 
differential equations (see $2) is very good. Moreover, both predict zero critical 
wavenumber for the onset of steady convection. 

A weakly nonlinear analysis in the neighbourhood of the multiple bifurcation point 
(sD, rD) results in a second-order amplitude equation for the evolution of a(t) ,  which 
we may write as (ML) 

q = p ,  p = aq+/3p+Mq3+I‘q2p, (10) 

where q is a rescaling of a( t ) ,  a, p, M and r are functions of the various parameters 
(a ,  p also depend on r and s, the perturbations from rD and sD). For q = 1, 7 = 0.15 
we find that M > 0, r < 0 and the behaviour associated with (10) is described in 
detail by ML, to which the reader is referred; we shall briefly summarize the main 
results here. 

Between the stability boundaries for monotonic and overstable convection we find 
a line of heteroclinic bifurcations, denoting the parameter values for which the period 
of oscillation becomes infinite. Numerical integrations of (9) (Moroz 1985) show that 
sufficiently close to the point (sD, r D ) ,  the variation of the period with r is monotonic; 
only simple symmetric or asymmetric oscillations are possible. For larger values of 
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s period-doubling bifurcations can occur, leading ultimately to chaotic behaviour ; 
the variation of period with r is now multivalued in character (Glendinning & 
Sparrow 1984). For s < sk the onset of finite-amplitude convection is via a 
supercritical pitchfork bifurcation, whereas for s > sk subcritical steady convection 
is possible ; sk is the value of s for which a saddle-node bifurcation of the steady states 
first appears. The Hopf bifurcation first appears for s = sD > sk, and for 8 > sD there 
is no unique region of oscillatory convection ; if we fix s and increase r then subcritical 
steady convection always precedes the onset of oscillatory motion in contrast to 
behaviour predicted from the partial differential equations. Moreover, the five-mode 
system is capable of supporting large-amplitude oscillations which encircle all the 
equilibrium states. Such oscillations have not yet been observed in either 
thermohaline convection or in any of the other related models of double-diffusive 
convection. These large-amplitude oscillations are associated with the vanishing of 
M or r in (10) (Moroz 1986). 

If we define a thermal Nusselt number 
W 

N,(t) = 1+7~Cndo,(t) (11)  
1 

for the truncated models by analogy with (6), then (11) gives No-1 = 2e( t )  < 2. It 
will be apparent from the integration of the partial differential equations to be 
reported in succeeding sections that much larger Nusselt numbers are possible. This 
fundamental disagreement is due to the upper limit on vertical temperature 
gradients imposed by the truncation. A similar limitation of course is present in the 
thermohaline problem. 

If we now include all modes up to m = 3, n = 3 in (8), together with the two 
modes bo,( t ) ,  dOl ( t ) ,  then we obtain a set of 38 nonlinear coupled equations (from 
which the reader will be spared!). In order to test the robustness of the behaviour 
found in the five-mode system to the presence of these additional modes, we have 
repeated some of our original computations. 

In all of the integrations 18 of the 38 modes decayed rapidly to zero (the same 18 
in each case) leaving a 20-mode system which gave identical results to the 38-mode 
system. The linear stability characteristics agree well with those for the partial 
differential equations and it is now possible for the Hopf bifurcation to precede the 
onset of subcritical steady convection. This occurs for s 2 150 (as compared to 
S 2 350 for the partial differential equations). 

Period-doubling bifurcations as well as aperiodic oscillations occur in both the 20- 
and 38-mode systems, but their appearance is delayed to larger values of s (the first 
observation of a period-2 orbit was for s = 904 with the 20-mode model, compared 
with s = 350 with the five-mode model). The maximum value of N ,  at the saddle 
node is more difficult to compute but appears to be 4. Finally, we were unable to 
locate the large-amplitude oscillation which occupies a substantial part of the five- 
mode parameter space discussed by Moroz (1986) ; and we conclude that this kind of 
motion is an artifact of the truncation. 

4. Motion under periodic boundary conditions 
Nonlinear evolution has been studied using a finite-difference numerical scheme 

described in detail in Lele (1985); its general features are summarized in the 
Appendix. When S exceeds SD, stability is first lost to overstable motions by a Hopf 
bifurcation at R = RH. With the general periodic boundary conditions considered in 
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this section, the Hopf bifurcation can produce oscillatory motions which can take one 
of two forms (Schechter 1976; Golubitsky & Stewart 1985) ; travelling waves (TW), 
which are oscillatory in the frame in which the basic state is specified, but are steady 
in some reference frame translating uniformly a t  right angles to the basic velocity 
vector; or standing waves (SW), which are oscillatory in all reference frames. Like 
steady states, the TW solutions are characterized by time-independent global 
quantities, such as Nusselt number. It can be shown (see Golubitsky & Stewart 1985) 
that only one of these two kinds of solution can be stable near RH, and then only if 
both the TW and XW branches bifurcate supercritically. We find that for a limited 
range of S ,  SD < S < Pub, where Ssub is a value lying between 400 and 500, the Hopf 
bifurcation is supercritical, and the oscillatory motion a t  onset is in the form of a 
standing wave (SW). For a limited range of S beyond Ssub the TW is subcritical; SW 
are not found, but finite-amplitude TW's are realized. For one value of S beyond this 
range, we have found coexisting finite-amplitude TW and SW, consistent with both 
TW and SW branches bifurcating subcritically and having turning points. 

The calculations presented in this section are for values of q = 1 ,  corresponding to a 
computational domain of width L = 2. Other choices with L of this approximate size 
appear from sample calculations to yield similar results. 

For q = 1, the linear stability data presented in $2 indicates that the stability 
boundary for monotonic convection is fitted (with an error of 0.05 O h ) ,  over the range 
of S that we consider, by the line in the (S ,  R)-plane 

RM = 459+3.933 

and that for overstable convection (the Hopf bifurcation, error less than 1.5%) 

RH = 692 +0.85S. 
by 

These intersect at S = SD = 76, R = RD = 757 ; for S < SD, the RM(S) is the linear 
stability boundary, for S > SD, it is RH(S). 

Numerical traverses have been taken a t  X = 0,50, 150, 350, 400, 450, 600, 1500 
and 3000. In each case, R is increased until a limit cycle or steady convection results 
from a weak numerical perturbation. The solution branch is then traced as R is 
further varied (by either increasing it or decreasing it). This section describes 
computations made with general periodic lateral boundary conditions. The effects of 
replacing these by the more restrictive no-flux lateral conditions, which do not 
permit travelling waves, are assessed in the next section. 

For S < S* < SD, the bifurcation to steady convection is supercritical, while for 
S > S*, the bifurcation is subcritical. We have not determined the precise value of 
S* ; a t  S = 0 the bifurcation is supercritical, for S 3 50, it  is subcritical. Bifurcation 
diagrams for S = 0,50 and 150 are shown in figure 3, with R as bifurcation parameter 
and N o - 1  as amplitude measure. The solid curves give the branches of nonlinear 
stable steady states. Our numerical simulations use time-dependent schemes, and are 
not capable of capturing the unstable branch of steady states (shown as dashed 
lines). Therefore, the locus of points on this branch is only a schematic illustration, 
although the end points are correctly shown in figure 3(a, b ) ;  in figure 3(c), the 
bifurcation point for steady circulations is too large to be shown on the scale of the 
figure, as it occurs a t  R = 1048. A Hopf bifurcation arises for S > SD = 78.2, and this 
bifurcation point is marked with an H in figure 3(c). As R is increased, the Hopf 
bifurcation is encountered first if S > SD, and the onset of instability is oscillatory 
with bifurcating solutions taking the form of either standing or travelling waves. 



Nonlinear dynamics in Langmuir circulations and thermosolutal convection 485 

Ne- 1 

I 
R" 

480 
R 

520 560 

N8- I 

R 

l4  t 
I2 t 

6 t  

720 Rt 800 RH 900 
R 

FIQURE 3. Nusselt numbers as a function of R for (a )  S = 0, ( b )  50, (c) 150. The solid curves 
represent stable steady convective motion under general periodic lateral boundary conditions. The 
dashed lines are schematic representations (not computed) of unstable steady states : these meet 
the stable branches a t  the turning points, labelled R,. The Hopf onset is marked by an H, and the 
monotonic onset by an M. The latter is off the graph in (c). 

The points labelled Rt in the figures are turning points, saddle-node bifurcations 
that divide the stable from the unstable branches of steady states. 

Figure 4 (a, b )  shows streamlines and vorticity contours for two points on the solid 
curve of figure 3(c )  (8 = 150). Figure 4(a),  at R = 760, is close to the turning point 
R,; figure 4 ( b )  corresponds to R = 900, the last point shown in figure 3(c) .  For 
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FICIJRE 4. Streamlines (left figure) and vorticity contours (right figure) for S = 150. (a )  R = 760, 
close to the turning point in figure 3 ( c ) .  ( b )  R = 900, the last point in figure 3 ( c ) .  

R = 760, the streamlines are almost symmetric about vertical lines passing through 
cell centres, while for R = 900, each streamline has rough symmetry about a line 
tilted from the vertical. This tilting is even more apparent in the vorticity contours. 

The streamlines forming the cell boundaries for these flows are straight and 
vertical and these lateral boundaries are stress-free and have zero heat flux. These 
constraints are not imposed, but as the flow evolves, these conditions are maintained. 
This does not remain true for calculations a t  larger values of S. 

At S = 350, cell boundaries no longer are straight and vertical or stress- and flux- 
free. The solid curve in figure 5 is a bifurcation diagram for this value of 8, and gives 
Nusselt numbers of steady stable states. The turning point (and the unstable steady 
branch, not shown) has smaller Nusselt number, hence weaker disturbances, than 
does the corresponding point a t  smaller values of 8. Thus, for R slightly greater than 
R,, weaker finite-amplitude disturbances are required for transition to  steady 
convection than is the case a t  smaller values of S. 

The form of the motion is shown in figure 6 for two values of R. Figure 6 ( a )  shows 
the streamlines and vorticity contours for tZ = 965, which is approximately at  the 
turning point, and figure 6(b) is a t  R = 1160, which is the last point shown on the 
solid curve in figure 5. The cell sides now tilt and zero level curves of stream function 
and vorticity no longer coincide. 

Whereas for S = 150 the two cells comprising the motion have mirror-image 
symmetry about the plane separating them, this is no longer true a t  S = 350. The 
symmetry can be imposed, however, by applying constrained boundary conditions 
rather than the general periodic ones. If these are applied a t  y = 0 and 2, then 
symmetry may or may not be enforced, because the boundary dividing the two cells 
is free to tilt (or to move). Nevertheless, we find that the symmetry is maintained 
with boundary conditions constrained in this way, a t  least for S = 350. (At larger S 
this is not so, and to find motions with straight and stress-free boundaries, we must 
allow only one cell in the computational domain by applying constrained conditions 
over half the lateral region, i.e. at y = 0 and y = 1.) We do not display the stream 
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FIGURE 5. Nusselt numbers a t  S = 350 for stable steady states, shown as a function of R. The solid 
curve is obtained with general periodic boundary conditions and the dashed curve with constrained 
boundary conditions. The Hopf bifurcation occurs at  approximately R = 990. 

FIGURE 6. Streamlines and vorticity contours as in figure 4, but for S = 350. (a) R = 965, close to 
the turning point of the solid curve in figure 5. (6)  R = 1160, the last point on the solid curve of 
figure 5. 

function and vorticity contours of the constrained motions, since they closely 
resemble those of figure 4. The dashed line in figure 5 shows the stable steady states 
for S = 350 when the motion is subjected to the constrained boundary conditions. 
These steady states are not stable if the constrained boundary conditions are relaxed. 
We have tested their stability by computing first under the constrained conditions 
until steady solutions on the dashed curve are established, then adding a weak 
perturbation that breaks the symmetry, allowing the subsequent evolution under 
general periodic boundary conditions. In all cases, the system moves from steady 
states on the dashed curve to steady states on the solid curve. This statement 
remains true for all values of S larger than 350, although for all of the values of 
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FIGURE 7 .  Time trace of shifted Pu’usselt number N o -  1 for B = 350, R = 1040 and q = 1. The 
broken curve is computed with constrained flux-free vertical sidewall boundary conditions, and 
leads to oscillatory convection. The solid curve is computed using the oscillatory solution as initial 
data and periodic sidewall boundary conditions : it shows the oscillatory convection to be unstable 
to steady convection under periodic boundary conditions. 

S > 350 that we have computed, the constrained steady states first lose stability to 
travelling waves rather than to steady states when the flux constraint is released. As 
R is increased further transitions to another branch of travelling waves, or to a 
steady solution branch may occur. 

Notice that the turning point on the solid curve in figure 5 occurs at considerably 
smaller values of R than for the dashed curve, so that the region of subcritical steady 
convection is much deeper for the former case. It is also interesting to note that the 
constrained case has, for large enough R, larger heat transfer than the unconstrained 
case. Since the constrained states are unstable, the system clearly does not maximize 
heat transfer for the larger values of R. 

For S = 350, a Hopf bifurcation to oscillatory convection in the form of standing 
waves occurs at R = RH. This is a supercritical bifurcation, a fact that we infer by 
observing that we do indeed compute time-periodic motions for R slightly exceeding 
RH, but no non-trivial time-asymptotic states below it. The frequency of these 
marginally supercritical motions is close to the corresponding linearly unstable 
solution. The amplitude measures of the supercritical SW motions increase as R 
increases, and the frequency decreases. 

These periodic SW states can be followed only for a small interval in R. Where they 
exist, they turn out to have vertical flux-free cell boundaries, and therefore are also 
solutions for the constrained case ( A )  in (4), although no constraint was imposed. 
This symmetry is lost simultaneously with the termination of periodic motion, and 
its replacement by steady convection, a t  a value of R only slightly above RH. Thus, 
i t  appears that these periodic states are associated with motion having the spatial 
symmetry found in ( A ) ,  and that they are unstable to a less symmetric steady state. 
The event sequence for L = 2 a t  S = 350 illustrates this behaviour. The onset of 
periodic convection occurs a t  RH = 985.4, with frequency of the oscillation being 
w, = 5.826 (period a t  onset is T ,  = 2 x 1 ~ ~  = 1.077). As R increases, the period 
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FIGURE 8. Shifted Nusselt number us. R. for the overlapping travelling waves and 
steady-state solution branches found at S = 450. 

increases, and a t  R = 990, T = 1.12, and the cell boundaries are, as they are a t  onset, 
vertical and stress- and flux-free, At R = 1040, the limit cycle is not found ; instead, 
monotonic convection with cell boundaries that are no longer vertical and stress- and 
flux-free prevails. Apparently, the periodic motion loses stability and the system is 
attracted to a monotonic convective state a t  some R = RHM(S),  where RHM(350) < 
1040. This loss of stability of the periodic motions, arising under mildly supercritical 
conditions (at S = 350, (RHM(S)-RH)/RH < 0.055) may be seen in figure 7. This 
shows time series for N ,  - 1 for two calculations. One is a periodic motion obtained 
by forcing vertical stress-free boundaries (as in the following subsection). The second 
is found using identical initial conditions, but with periodic boundary conditions : 
after tracing out the same path for a number of oscillation cycles, the system settles 
into a steady state. 

We have attempted to trace steady states a t  larger S under general periodic 
boundary conditions. For S = 450, we found a stable steady state which we traced 
for a limited range of R between 1270 and 1320, and a stable travelling wave solution 
branch traced again for a limited range of R between 1140 and 1300. We presume 
that both of these branches may be continued further, but we have not done so. We 
shall refer to this family of travelling waves as ‘TW1 ’, to distinguish them from a 
second family found a t  larger S. Notice that the steady state and the TW1 branches 
coexist: it  would be of interest to know whether these branches connect a t  some 
value of R, but we have not further explored the question. Figure 8 displays the 
shifted Nusselt number us. R behaviour that has been found for these two solution 
branches. Figure 9(a) gives the variation of the travelling wave speed as a function 
of R for the TW1 branch, and figure 9(b) shows a progression of stream-function 
snapshops for the TW1 a t  R = 1140 (the first point on figure 8). The stream-function 
contour shape changes only slightly over the range of R shown in figure 8, and the 
steady-sta,te stream function looks much the same. The situation a t  S = 600 (not 
shown) is similar to that at 450, only the motions are more vigorous, the distortion 
of cells and vorticity contours is more exaggerated, the Hopf bifurcation point occurs 
at R = R H ,  closer to the turning point value of R = R,. We did not calculate beyond 
R = 1400, and obtained only travelling waves. 

All of the steady and travelling wave solutions found under general periodic 
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FIGURE 9. (a )  Variation of the travelling wave speed as a function of R for the TW1 branch at 
S = 450. (6) Sequence of instantaneous stream function contours for the TW1 branch at S = 450, 
R = 1140. 

boundary conditions exhibit a (flip) symmetry about the midplane permitted by the 
problem but not forced by the numerical method: +(y, z,  t )  = - +(y+g, - 1-2, t ) ,  
a symmetry shared by the streamwise velocity and temperature pertubations u 
and 8, and the vorticity. I n  addition, all of the steady-state and travelling wave 
solutions presented so far have 'staggered ' cell centres, which lie alternately above 
and below the horizontal midplane, x = -;. It is easiest to see this, as well as the flip 
symmetry, in the vorticity contours. 

For some value of S between 600 and 1500 another bifurcation takes place. The 
nature of this transition may be seen in the bifurcation diagram of figure 10(a, b)  for 
S = 1500 and 3000. As R is reduced from large values, the curve is a t  first similar to 
that seen before, and we identify the travelling waves on this branch with TWl. 
Now, however, a break occurs in the curve a t  a point R*, and it  continues off a t  a 
different angle and seems to  approach its termination with an infinite slope, 
consistent with a turning point. Figure lO(c) gives the speeds of these travelling 
waves. On the TW1 branch, the motion is qualitatively as before: cell centres are 
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FIGURE 10. (a)  Nusselt number vs. R for p = 1, showing a bifurcation between two branches of 
travelling waves, TW1 and TW2 for S = 3000. (b )  Detail of part (a )  to larger scale: the location of 
the Hopf bifurcation (R  = 3191) is marked. (c) Variation of the travelling wave speed as a function 
of R for the travelling wave branches at S = 3000. 

offset from the horizontal midplane. On the other hand, the new, lower R, branch has 
cells that continue to have curved boundaries and flip symmetry, but cell centres no 
longer have ‘stagger ’. Instead they are located, to the accuracy of the numerical 
scheme, precisely on the midplane, z = -$. This is determined by a detailed 
examination of the number fields generated for vorticity and stream function. Figure 
11 shows vorticity contours at  S = 3000, illustrating the bifurcation. The first two 
panels are on the TW2 branch, at  R = 3240 and 3280, and the remaining two are at  
R = 3360, and 3400, are on the TW1 branch. The TW1 branch is replaced by the 
TW2 branch for R below the bifurcation value R*. 

Decreasing R on the TW2 branch below the values shown in figure 10 causes the 
computations to converge to the trivial non-convective states with an indication of 
the steepening associated with the turning point of a saddle-node bifurcation. Notice 
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FIGURE 11. Vorticity contours at S = 3000. (a )  R = 3240, ( b )  3280, ( c )  3360, ( d )  3400 
(a )  and ( b )  are on the TW2 branch, (c) and (d) are on the TW1 branch. 

that the smallest values of R for which TW2 solutions have been found are below the 
Hopf bifurcation points (e.g. a t  S = 3000, the Hopf bifurcation occurs a t  R = 3191, 
and the apparent turning point for TW2 solutions is just below R = 3172) ; thus the 
Hopf bifurcation to travelling waves is subcritical 

We have also found a stable branch of finite-amplitude standing waves coexisting 
with the TW2 branch a t  S = 3000. This branch has been traced from R = 3190, a 
value subcritical to the Hopf bifurcation, to R = 3220. The SW is less vigorous than 
the TW, with the peaks of the oscillatory Nusselt numbers achieved being 
considerably smaller than the (steady) levels reached by the TW. One possible 
explanation for the coexistence of this SW branch and TW2 is that both subcritical 
branches have turning points which connect each unstable branch to stable ones. A 
bifurcation analysis, which has not yet been done, would help to clarify this 
point. 

5. Constrained motion 
We report results for constrained motion of two types, case ( A  : L = 2) with 

boundary conditions (4) applied with L = 2 ,  and case ( A :  L = l) ,  being the same 
except L = 1. (Other examples with non-integer values of L not differing much from 
2 and therefore close to the linearly most unstable oscillatory modes described in $2, 
have been calculated by Lele 1985, and yield qualitatively similar results.) Recall the 
' wavenumber ' parameter q = 2 / L  that  we have introduced. Application of 
constrained conditions ( A )  with sidewall boundaries separated by L permits the 
resolution of periodic motions with wavelength 2L,  or wavenumber l /L.  Thus the 
subcase of ( A :  L = 1) captures one cell (region of closed streamlines) of a periodic 
motion of wavcnumber q = 1 at marginally supercritical conditions, while ( A  : L = 2) 
can capture two counter-rotating cells of disturbances of wavenumber q = 1, but 
also one cell with wavenumber q = 1/2. When only one cell is included in the 
computational domain, the symmetries applied by K are realized, and the fixed 
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FIGURE 12. Variation of the (time) period, T, with R under constrained boundary conditions 
( L  = 1 )  for S = 1000. Note the rapid increase of period, interpreted as an approach to a heteroclinic 
(infinite period) orbit. 

sidewalls are boundaries of the cell. When two cells are included, there is an internal 
boundary dividing the two cells that is computed rather than being specified a priori, 
and this internal boundary need not be vertical or fixed in time, being movable by 
the existence of perturbations with q = 1/2: this case is therefore intermediate 
between the constrained and unconstrained conditions. 

5.1. Xingle mode motions 
The manner of disappearance of periodic motion suggests that we may be able to 
continue to realize oscillatory convection for R 2 RHM a t  S = 350, provided the 
constraint of vertical stress- free boundaries is enforced. Computations with boundary 
conditions ( A  : L = 1) show this to  be true. At S = 350, the period T of perturbations 
with fundamental wavenumber q = 1 increases as R increases, and T+ 00 as 
R+ Rhet z 1136. Similar behaviour is found for S = 500 and S = 1000: figure 12 
illustrates the latter case. Monotonic convection occurs for R 3 Rhet. The destruction 
of periodic motion in this way can be understood by reference to a local analysis of 
the five-mode system in the vicinity of the multiple bifurcation point (SD, RD). ML 
(in an analysis similar to that of Guckenheimer & Knobloch 1983) show that in the 
vicinity of this point, the five-mode system can be fully described by a subsystem 
with two-degrees of freedom. The periodic motion for each RH < R < Rhet 
corresponds to  a limit cycle contained within phase orbits connecting two saddle 
points (and thereby comprising a so-called heteroclinic orbit). The last possible 
periodic motion as R is increased is the heteroclinic orbit, which has infinite period. 
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FIGURE 13. Orbits of limit cycles for S = 350, and constrained boundary conditions with L = 1 .  ( a )  
Left and right panels are, respectively, projections onto the (A- l ,No-  1) (shifted) Nusselt- 
number plane and the ($, O)-plane. Top pair is for R = 1080 and the bottom pair for R = 1120. ( b )  
As in (a) for R = 1134, and showing the distribution of points visited during equal intervals of 
time. 

For still larger values of R, the system is attracted to a fixed point, representing 
steady motion. This scenario is consistent with the behaviour we have described for 
the full partial differential equations. Further support for this explanation is to be 
had by examination of the projections of the phase portraits a t  S = 350 shown in 
figure 13. Two projections are shown, one is the locus of points traced out in time for 
the values of A - 1 and N o  - 1 ,  and the other is the locus of $ and 6 at  a particular 
spatial point in our numerical grid. The grid used here is 16 x 16, and the point used 
for the projection (which we shall use again later) is the point (3,5).  Figure 13 (a) 
shows the development of the limit cycle for two values of R. Figure 13(b) shows a 
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FIGURE 14. Time history of temperature perturbations for constrained ( L  = 1) conditions for 
S = 350. R = 1130. 
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FIGURE 15. Regime diagram for S < 1000 under constrained boundary conditions ( L  = 1). Lines M 
and H mark onset of linear instability to monotonic and overstable convection. Triangles mark the 
locations of the computed turning points, R,(S), for steady convective states; the circles points, 
R""(S), where the period is estimated to reach infinity and a heteroclinic bifurcation is inferred. 
Steady convective states are subcritical relative to the onset of oscillatory convection for S < 250. 
For larger values of S ,  steady states are supercritical relative to the Hopf bifurcation, and may 
exist only for R > R, > RH. Note the apparent coalescence of Rhet(S) and R,(S) as S increases. 

limit cycle a t  this value of S for a slightly larger R, but with dots placed a t  equal 
intervals of time. Portions of the curve with closely spaced dots are traversed slowly, 
as would occur in the vicinity of a saddle point, and the figure shows two intervals 
of densely packed dots. The time series for 0 for R = 1130, in figure 14, shows the 
time behaviour associated with this flirtation with the saddle points. 

The increase of period with increase of R ,  with singly periodic motion terminating 
a t  what appears to be a heteroclinic bifurcation succeeded by steady convection, 
continues as S increases. Figure 15 is a regime diagram summarizing our findings for 
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S < 1000 under conditions ( A  : L = 1). The straight lines marked M and H on this 
figure correspond to the onset of linear instability to monotonic and overstable 
convection, respectively, for wavenumber q = 1 (corresponding, as above, to a pair 
of the cells computed under conditions ( A  : L = 1)). The triangles mark the locations 
of the computed turning points, R,(S), on the branch of steady convective states; the 
circles mark the terminal points, Bhet(S), for oscillatory motion as estimated from 
numerical experiment. On the line drawn through this point, the period of oscillatory 
convection reaches infinity and a heteroclinic bifurcation is inferred. For S < 250 
(approximately) steady convective states are subcritical relative to the onset of 
oscillatory convection. For larger values of S ,  steady states are supercritical relative 
to the Hopf bifurcation, and may exist only for R > R, > RH. Thus, for S > 250, 
there is a range of R for which only oscillatory motion can succeed the basic 
state. 

Another feature of interest in figure 15 is the apparent coalescence of Rhet(X) and 
R,(S) as S increases. The degenerate situation arising from such a coalescence, if i t  
indeed does occur, has not been observed before in studies of doubly diffusive 
systems. Preliminary analytical work which may provide some guidance as to 
possible behaviour in these circumstances has been done by Dangelmayr, 
Armbruster & Neveling (1985). 

5.2. Dynamics involving multiple spatial modes 
We now describe motions under ( A  : L = 2), and for S both smaller and larger than 
the intersection of the H1 and H2 Hopf boundaries. This choice of constrained 
conditions allows us to include spatial modes with both q = 1/2 and q = 1.  Recall 
that, a t  the intersection point, the system has a double Hopf bifurcation. 
Disturbances with the fundamental wavenumber corresponding to  L and those with 
its first harmonic are simultaneously unstable. In  the vicinity of these double Hopf 
points, and perhaps even a t  points somewhat removed from them, dynamical 
behaviour deriving from interactions between the two modes may be expected. This 
has been explored, using boundary data ( A  : L = 2), by numerical traverses a t  
S = 500, 1000, 1200 and 3000. The H1, H2 intersection arises at S = 1080, so the 
linearly most unstable mode is the fundamental q = 1/2 for S = 500 and 1000, and 
the first harmonic q = 1 for 1200 and 3000. We shall give results for the latter two 
cases only, and just summarize our findings for the first two cases. 

Our numerical traverses were carried out as follows: for S fixed, the system was 
given a weak perturbation with equal amplitudes in wavenumbers q = 1/2 and 1, 
with R set at, a supercritical value leading to a limit cycle consistent with a Hopf 
bifurcation. This motion was then traced to successively higher values of R by 
incrementing R and using the solution last found as initial data. A grid spacing of 
32 x 16 was used, and a time step of 0.001 was found adequate to  describe transients : 
very long simulations, typically 200000 time steps, were required for a given point 
in parameter space. 

At S = 1200, our linear stability results determine the onset of the Hopf 
bifurcation corresponding to q = 1 to be a t  R = 1710 with angular frequency o1 = 
67.67, and that corresponding to q = 1/2 to be a t  R = 1752, with angular frequency 
w2 = 14.39. For larger values of R, the frequencies associated with each of these 
modes will change, but we use the symbols w1 and o2 to  designate frequencies that 
can be traced to the two Hopf onset frequencies; as these are quite different, no 
confusion in this interpretation is encountered. Time series and power spectra a t  
( S , R )  = (1200,1740) show that the mode with the smaller frequency (i.e. w2, 
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associated with a perturbation having q = 112, which is linearly stable a t  this value 
of R) decays monotonically, and the system is attracted to a limit cycle with 
frequency wl. At (S, R) = (1200,1744), integration of the system to 100000 time steps 
again indicates attraction to the w1 limit cycle. A Poincare' section ($ vs. 0 taken at 
the section N o -  1 = 0.3 - the figure is not displayed in this paper but may be found 
in Lele 1985) show a spiralling towards a fixed point on the Poincare' section, but with 
an interesting feature. The trajectory in this approach (for the time steps 
80000-100000) appears to be locked onto 15 segments, so that 15 points are visited 
a t  each turn of the spiral. At the 100000th time step, when the calculation was 
terminated, the radius of the spiral is small. If the system is in fact attracted to a 
limit cycle, then each of the 15 sets of points will converge to the same fixed point. 
It appears likely that this will be the case. An alternative possibility is that each of 
the 15 sets approach distinct limit points, implying a frequency-locked periodic orbit 
on a 2-torus of small cross-section about the w1 limit cycle, and this cannot be ruled 
out without continuing the computation for significantly longer times. 

Simulations a t  ( S , R )  = (1200,1748) were carried out to  140000 time steps, by 
which time the nature of the motion was clearly established to be a periodic, two- 
frequency locked state, involving elements of both w1 and w2. The projection of the 
state space trajectory onto the ($, @-plane (at the point (3,5) in the grid) produced 
from the time interval between time steps 120000 and 140000 is shown in figure 
16(a), and the Poincare' section (defined by the intersection, in either direction, of the 
section N o -  1 = 0.3) for the same period is shown in figure 16(b). The asymptotic 
state is a limit cycle on a 2-torus. This limit cycle passes through the surface-of- 
section exactly 19 times in each direction, producing 19 points in the Poincare' 
section, after which time the process is repeated. Examination of the order in which 
these points are visited, the rotation number p,  (see Iooss & Joseph 1980) was found 
to be 4/19, meaning that for 19 rotations about the larger dimension of the torus, the 
orbit passes around its smaller dimension exactly 4 times. The conclusions drawn 
from here were verified by examining other Poincar6 sections, not shown. I n  
addition, power spectra confirm this picture. For example, the power spectrum (see 
Lele 1985, where the spectrum is plotted against circular frequency f = w/27t) of $ 
(at point (3,5)) shows sharp peaks a t  w1 w 57.33k0.79 and w2 w 11.78f0.79 and 
additional peaks consistent with 4/ 19 frequency-locked periodic motion involving 
these two frequencies, the fundamental frequency of which is w* = wl/19 = w2/4. 
The power spectrum of N ,  shows sharp peaks a t  2w1 and 2w, (Lele 1985); since N o  is 
insensitive to the sense of the motion, this behaviour of the power spectrum also 
indicates motion with the frequencies w1 and w 2 ,  again confirming our conclusions. 

Quasi-periodic two-frequency motion (that is, having two incommensurate 
frequencies) obtains a t  (8, R) = (1200,1750). Simulation at this point was carried out 
to 200000 time steps, which sufficed to conclude that the asymptotic state was 
indeed quasi-periodic. Figure 17 ( a )  shows the state space trajectory in the ($, 0)- 
projection previously described, for the last 20000 time steps of the simulation, while 
figure 17 ( b )  shows the Poincare' section, but now displaying points visited in the final 
40000 time steps. The circles in figure 17 ( b )  correspond to points crossing the surface- 
of-section during the final 20000 time steps, and the triangles mark crossings during 
the 20000 preceding time steps. Over most of the Poincare' section, the circles are 
phase shifted relative to the triangles, but both sets of points appear to fall on the 
same curve. If the simulation were to be continued, new points on the curve would 
be visited, eventually filling in a smooth, dense curve, indicative of a quasi-periodic 
orbit on the 2-torus. Power spectra again show two dominant frequencies and also 
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peaks a t  sums and differences of the two principal frequencies (expressed as circular 
frequencies, these are fi = 2.90k0.04 and f2 = 0.60+0.04) which are inferred to be 
incommensurate. 

If R is increased to a value ($, R) = (1200,1754) just above the Hopf bifurcation 
point (S ,  R) = (1200,1752), quasi-periodic motion is lost, and the system is attracted 
to a single-period limit cycle. This is established by time-series and power spectra. In  
the simulations, the larger frequency (q) signal decays monotonically, leaving only 
motion with frequency w 2 ,  corresponding to the nearby Hopf transition. We have 
looked at the spatial structure of the oscillatory motion remaining, and find only a 
single cell in our computational domain of L = 2, thus firmly connecting it with the 
q = 1/2 Hopf bifurcation. The loss of stability of the quasi-periodic state to a single- 
frequency limit cycle is consistent with the local unfoldings of Moroz & Leibovich 
(1987, generalizing, for the present problem, the analysis of five-mode system of $ 3  
- and in particular ML - to the case of two spatial modes), and of Guckenheimer & 
Holmes (1983) and Moroz & Holmes (1985) for other finite-dimensional systems. In 

FIGURE 16. (a )  Projection of the state space trajectory onto the (@, 8)-plane at  point (3,5) in the 
grid for ( S , R )  = 1200, 1748). (6) Poinear6 map at surface-of-section N o - 1  = 0.3 for the same 
period. The asymptotic state is a limit cycle on a 2-torus with rotation number p = 4/19. 



Nonlinear dynamics in Langmuir circulations and thermosolutal convection 499 

0.4 f 
0.3 

0.2 

0.1 

e o  

-0.1 

-0.2 

-0.3 

-0.4 I I I I I I 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 

# 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 

* 
FIGWRE 17. (a) State space trajectory in the ($,@)-projection at (8, R )  = (1200,1750) with quasi- 
periodic two-frequency motion. ( b )  Poinear6 section : the circles correspond to points crossing the 
surface-of-section during the final 20000 time steps, and the triangles mark crossings during the 
20000 preceding time steps, and are generally phase-shifted relative to the triangles, but fall on the 
same curve. 

these analyses, the quasi-periodic state approaches the w2 limit cycle as a control 
parameter is increased, and merges with i t  a t  some critical value, beyond which only 
the o2 limit cycle is obtained. If R is increased sufficiently a t  S = 1200, all time 
dependence is lost, and the system evolves to steady convection. 

vi7e now turn to the traverse a t  S = 3000 under the constrained conditions 
( A  : L = 2). According to our linear stability calculations, the Hopf bifurcation point 
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R Branch I description Branch 11 description 

3191 Hopf bifurcation, T = 0.317 Hopf bifurcation, T = 0.317 
3540 SP, T = 0.392 - 

SP 3550 
3556 ~~~ QP2T, not fully characterized 
3560 ~- P2T, T* = 46.4 

3600 SP, T = 0.409 

3610 SP, T = 0.4055 As at 3600 

- 

3580 ~ P2T, T* = 15.19, p = 491162 
Not fully characterized, either QP2T or 
P2T with large fundamental period T* 

3612 - P2T, T* = 14.67, p = 11/38 
3614 __ P2T, T* = 22.76, p = 50177 

3616 ~ P2T, T* = 2.70, p = 217 
3615.4 - P2T, T* = 2.70, p = 217 

3620 P2T, T* = 2.71, p = 217 
3624 QP2T P2T, T* = 2.72, p = 217 
3626 QPZT, TI z 0 408, T, x 1.60 - 

3628 P2T, T* = 2.72, p = 217 
3628.06 ~ Intermittent chaos 
3630 - Intermittent chaos 
3640 ~ Intermittent chaos 

QP2T, p x 0.294 (irrational) 

QP2T, TI x 0.408, T, z 1.60 

TABLE 2 .  Types of motions computed under constrained conditions with L = 2 

(H,) a t  S = 3000 for disturbances with q = 1 occurs a t  R = 3191 with frequency 
w ,  = 19.8 (or period TI = 2n/wl = 0.317), and that for q = 1/2 (H,) occurs a t  R = 
3827 with frequency w 2  = 4.9 (or period T, = 1.28). Following the procedure already 
outlined for the traverse a t  S = 1200, we explored the dynamical behaviour as R is 
increased from RH. Briefly, we find the single-period (SP) motion branching a t  the 
Hopf bifurcation point of R = 3191 to persist to R = 3610 on what we designate as 
branch I. Somewhere between this value and 3620 on branch I, the limit cycle loses 
stability to a quasi-periodic 2-torus (abbreviated subsequently as QP2T) wrapped 
around the limit cycle. Motion on this QP2T has been traced up to R = 3628, but it 
coexists with other attractors to be described. We have not attempted to track the 
QP2T on branch I to values of R larger than 3628. The limit, cycle branching a t  the 
Hopf bifurcation point can also lose stability, a t  R = 3550, to other perturbations. 
We call this branch 11. The states arising include a QP2T distinct from that on 
branch I, followed, as R is increased, by a sequence of states attracted to periodic 
motion on a 2-torus (P2T) with different (rational) frequency-locking ratios : 
subsequent bifurcations of this branch lead to chaotic states. The system behaviours 
we have found are listed in table 2 according to the branch from which they stem. 
Bifurcations along each of these two main branches are inferred a t  points separating 
intervals of R with qualitatively distinct features. In  some cases, we indicate the 
period: if the attractor is a frequency-locked state, the period given is T*, the 
fundamental period, and, where given, p is the rotation number (the ratio of the two 
locked frequencies), which was determined from the order that  points are laid down 
on the Poincar6 section as previously described. 

Clearly, the sequence of events on branch I1 is more complex than on branch I, as 
the latter seems to have only singly periodic and two-frequency quasi-periodic states. 
Consequently, we shall illustrate only the characteristics of solutions found on 
branch 11. 
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FIGURE 18. Poincare' surface-of-section at N o -  1 = 1 with S = 3000, R = 3556. Plot is projection on 
the (+,@-plane. The continuous segments in the figure indicate a 2-period quasi-periodic 
solution. 
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FIGURE 19. Similar to  figure 18, but a 2-period locked orbit occurring at S = 3000, R = 3560: 

each point in the Poincare' plot has been visited twice. 

Figure 18 is a Poincare' surface of section (taken at N , -  1 = 1) a t  R = 3556. From 
the seemingly continuous segments in the figure, we believe i t  to be a 2-period quasi- 
periodic solution. Figure 19 shows the corresponding picture for the 2-period locked 
orbit occurring at R = 3560: each point in the Poincare plot has been visited twice. 
Figure 20(a) a t  R = 3580 is similar, and shows a %period locked motion, with 
TJT, = 49/162. The fundamental period T* was determined precisely by following 
the system khrough four repetitions of the Poincare' plot. The Fourier transform of 
the time series of ~ in figure 2 0 ( b ) ,  taken over four periods of the fundamental, 
shows the constituent (circular) frequencies fl = l/Tl and fi = l/T3, as well as the 
fundamental f* = l/T*. These pictures are very similar at R = 3612 (which we do 
not show), but the locking ratio there is 11/38. 

What we identify as intermittently chaotic states arise from a frequency-locked 
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FIQURE 20. (a) As in figure 19, but showing the (u, $)-plane at R = 3580. This is a 2-period locked 
motion, with rotation number = 49/162. (b) Fourier transform of $. The constituent frequencies 
f ,  = 1/T,,f2 = l/T., and fundamental f *  = 1/T* are marked. 

state with locking ratio 217. This ratio is maintained for an interval of R that seems 
to extend from about 3615 to 3628. The @-u and No-  1 vs. 4- 1 projections of the 
217 orbit at  R = 3624 are shown in figure 21 : the tracing and retracing of the seven 
big loops in the 8% projection can easily be followed. Time traces for N o -  1 and for 
@ are shown in figure 22. 

The 217 locked periodic state that persists to R = 3628 is succeeded at  R = 3628.06 
by an apparently intermittently chaotic state. Figure 23 shows the time series of @ 
at this transition to chaos (the time series is compressed by displaying only those 
values of @ at crossings of the Poincark section No-  1 = 1) as well as at  R = 3628.2 
and 3628.4. Here the characteristics of the 217 locked periodic state remain evident, 
but the trace is interrupted at irregular times and for irregular durations by non- 
periodic ‘bursts’. The windows marked A have the features of a 217 periodic orbit. 
Windows marked B correspond to bursts, excursions of the system to other regions 
of phase space before returning to the weakly unstable states associated with the 
2/7 orbit. As R is increased, the fraction of time spent in the ordered state decreases. 
Windows marked C also appear to be explicable as significant time spent by the 
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FIQURE 21. II. vs. u and NB- 1 vs. A - 1 projections of the frequency-locked state at R = 3624. 

The orbit has rotation number p = 2/7. 

system close to a periodic or quasi-periodic orbit, but one different in character from 
the underlying 2/7 orbit. Recalling the coexisting quasi-periodic orbit available, 
branch I, a t  these value of R leads to one possibility, but we have no evidence to 
support this suggestion. 

The Poincare' plot (of 8 0s. $, for 120 time units or 120000 time steps) in figure 24 
shows the chaotic state at R = 3630. The corresponding $ spectrum in figure 25 
shows strong peaks at the frequencies of the 2/7 locked state, but a comparison with 
spectra computed for the demonstrably 2/7 locked states shows an increase in 
broadband background levels by two orders of magnitude. 

The transition to chaos shown here appears consistent with the Pomeau- 
Manneville (1980) type-I intermittent transition. The characteristics of this kind of 
transition are as follows : an ordered (periodic) motion loses stability a t  a parameter 
value R, to a state in which bursts interrupt the ordered motion. Near the bifurcation 
point, the mean interval between bursts is predicted to vary in proportion to 
(R-R,)-i,  but the burst amplitude does not change appreciably. Aside from the 
qualitative similarity in the present system behaviour and this scenario, the only 
corroboration of our impressions immediately available to us is the variation of mean 
interval between bursts with R, and even here there is both a subjective element (in 
the decision on the time of onset of bursting and the time of return to order) and too 
small a sample of data points to lead to a convincing determination. Nevertheless, 
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FIGURE 22.  Time traces of N o -  1 and of pk for motion shown in figure 21 

if we use the three records shown in figure 23 to estimate the time spent in state A, 
controlled by the underlying 217 attractor, we find i t  consistent with the square-root 
behaviour, the time being approximately given by 11.2(R- RJ;, with R, z 3627.91. 

Before leaving this subsection, it is important to again emphasize that the complex 
motions reported here and summarized in table 2 exist only when the symmetries 
associated with the constrained boundary conditions (here with L = 2, permitting 
two spatial harmonics to interact) are enforced. When these are relaxed to require 
only spatial periodicity, the temporally complex states are expected to be unstable 
and therefore unrealizable. This expectation was directly verified in one case. 
Beginning with the 2/7 locked orbit as initial data, the computations were continued 
with spatially periodic boundary conditions, and the system evolved to a steady 
state. 

6.  Concluding remarks 
Previous computations of thermal convection by Curry et al. (1984) have shown 

that the relaxation of lateral symmetry conditions leads to  a significant reduction of 
the Rayleigh number for transition to periodic convection in two dimensions, but 
they did not uncover qualitatively different dynamical behaviour resulting from a 
change of lateral boundary conditions. (More significant qualitative changes were 
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FIGURE 23. Compressed time series of $ a t  (a) R = 3628.06 (slightly above the transition to chaos). 
(b) R = 3628.2, (c) R = 3628.4. Characteristics of the 2/7 locked periodic state remain evident, in 
windows marked A. Windows marked B correspond to disordered bursts. Those marked C also 
appear ordered, but different from A. 
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FIGURE 23. Compressed time series of $ a t  (a )  R = 3628.06 (slightly above the transition to chaos). 
( b )  R = 3628.2, (c) R = 3628.4. Characteristics of the 2/7 locked periodic state remain evident, in 
windows marked A. Windows marked B correspond to disordered bursts. Those marked C also 
appear ordered, but different from A. 
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FIGURE 24. Poincark plot in ($, 0)-projection, chaotic state at R = 3630. 
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FIGURE 25. $-spectrum for case shown in figure 24. Pu'ote strong peaks a t  the frequencies 
of the 217 locked state, but also the development of broadband noise. 

found in going from two to three dimensions, the important effect of this change 
being the major point of their paper.) 

An important general lesson learnt from the present study is that innocent 
alterations of lateral boundary conditions and symmetry conditions in the horizontal, 
as well as conditions on the top and bottom planes, can lead to qualitatively different 
behaviour a t  least in problems of doubly diffusive type. Most are aware of the 
significance of the choice of conditions at the top and bottom of the fluid layer, but 
this is often not true of lateral conditions. The imposition of symmetry conditions is 
a tempting and commonly adopted way of stretching computational resources at no 
apparent additional cost : it  therefore is important to appreciate that the solutions 
so obtained will not be realizable in many problems of interest. In particular, 
whenever any existing lateral constraints are separated by distances large compared 
with the layer depth - as would generally be the case with Langmuir circulations as 
well as many thermosolutal problems - the symmetry conditions or constrained 
lateral boundary conditions are physically unrealistic, and periodic conditions 
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should be used instead. We therefore regard the solutions found under constrained 
(no-flux) lateral boundary conditions to be physically unrealizable for Langmuir 
circulations, except possibly in unusual circumstances. 

The replacement of the isothermal boundary condition of the ‘ideal double- 
diffusion’ (IDD) problem by constant heat flux a t  the top and bottom planes results 
in lower critical Rayleigh numbers for destabilization of the rest state. In  the sense 
that this replacement imposes less severe constraints on the system, this effect is not 
unexpected. When periodic lateral boundary conditions are imposed in the present 
problem, however, there are added dynamical possibilities. In the overstable regime, 
the most complex time dependence to emerge, in both the ideal double-diffusion 
problem and the present one, is a limit cycle. On the other hand, this may exist in 
two stable forms, both a standing wave and a travelling wave, or alternatively, 
stable travelling waves may coexist with stable steady states. Initial conditions will 
determine which of the coexisting stable states will be realized. These possibilities do 
not arise in the IDD problem. When constrained, no-flux, lateral boundary 
conditions are imposed, more complex dynamics are possible in both problems, but 
the resulting time-dependent motions are qualitatively different. Period doubling 
occurs in IDD but not in the constant-heat-flux or Langmuir circulation case, which 
instead yields either two-frequency locked, or two-frequency quasi-periodic, or 
intermittently chaotic motion. 

In  all cases, if the destabilizing Rayleigh number R is increased sufficiently (the 
precise value increasing with the stabilizing Rayleigh number S), steady convection 
is expected to result. Physically, this just implies that as the convection and resulting 
overturning of isotherms in the LC case (or stabilizing solute contours in the double- 
diffusion case) increases, the restoring buoyancy force due to the stabilizing agent is 
reduced, in effect reducing S in the bulk of the fluid to values too low to admit 
oscillatory convection. The steady convection that results is subcritical (with respect 
to monotonic convection) and is more deeply subcritical when periodic boundary 
conditions are imposed than it is when constrained boundary conditions are 
imposed. 

In the two-dimensional Langmuir circulation case, time-dependent convection is 
possible only in a modest range of supercritical Rayleigh numbers. This suggests why 
the visible surface windrows that serve as the hallmark for Langmuir circulations are 
so prominent and prevalent. The organization of surface tracers into windrows is 
favoured by steady convective motions, and may be impossible, or a t  least weak and 
erratic, under conditions of oscillatory convection. Oceanic conditions are likely to be 
supercritical but unlikely to fall in the fairly small window that permits oscillatory 
convection. Thus, steady convection is the expected form of Langmuir circulations, 
a t  least in two-dimensions and subject to the other idealizations made in posing our 
theoretical model. 

The possibility of travelling waves, which according to the results here should 
propagate rather slowly, leads to  one possible explanation for observations of 
Langmuir circulation windrows that drift sideways to the wind. The present results 
suggest that this mode of drift will be possible only under conditions which are not 
highly supercritical and for which density stratification exists and survives the 
mixing accomplished by the Langmuir circulations. 
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Appendix 
We outline the salient features of our numerical procedures. More detail can be 

found in Lele (1985). 
The governing equations (2) are first slightly recast before introducing the finite- 

difference approximations used to solve them. Anticipating that the numerical 
problem will be posed on a computational domain of width L in the y-direction, and 
that periodic solutions in y with wavelength L will be of particular interest, the 
following decompositions are introduced : 

where 

identifies (u)(z,t) and ( 0 ) ( z , t )  to be the cross-stream averages of u and 0, 
respectively, while u’(y, z,  t )  and 0’(y, z,  t )  represent fluctuations about these average 
values. It should be recalled that u and 8 represent perturbation fields to the 
nonconvective equilibrium state. 

The equations governing the mean and fluctuating fields may be obtained from (2) 
by first taking their y-averages and subtracting the averaged from the original 
equations. Boundary conditions requiring periodicity over L are used to simplify the 
results. The resulting set of equations is discretized over a staggered, uniform grid. 
Different terms in the equations are discretized differently ; all approximations, 
however, are second-order accurate. In  constructing our approximation schemes we 
have followed the work of Orszag (1971), Williams (1969) and Piacsek & Toomre 

The Jacobian J($, [) is discretized using the quadratic conserving scheme 
developed by Arakawa (1966), which has the advantage of exactly conserving the 
finite-difference analogues of vorticity , mean-square vorticity (enstrophy), and 
kinetic energy of motion in the (y, 2)-plane. The Jacobians J($, u’) and J($, el) are 
discretized using the scheme developed by Lilly (1965), which provides exact 
conservation of the finite-difference analogues of x-momentum, heat, mean-square 
temperature fluctuation, and kinetic energy associated with the x-velocity 
component u’ on the staggered grid. All diffusion terms are approximated using 
standard central differences. 

A two-step time advancement is used that provides formal second-order-accurate 
(()(At)’) results. To avoid the time-step restriction on the stability associated to an 
explicit treatment of the diffusion terms, a time-splitting method (see Roache 1976, 
or the appendices of Orszag & Patera 1983, for details) is adopted. Briefly, the field 
is advanced in two steps, with diffusive terms accounted for in one step and non- 
diffusive terms in the other. This procedure introduces additional truncation errors. 
As argued by Orszag & Patera (1983), if each of the steps individually has a formal 

(1980). 
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accuracy of O(At)2, then the overall error in the advance is O(At)e. Orszag and his CO- 

workers reduce this error by using a local Richardson extrapolation with every time 
step. We instead use a simple averaging scheme to reduce the error. The field is 
advanced by accounting first for the diffusive terms only, then for the non-diffusive 
terms only, and then the process is repeated in the opposite order. After these two 
separate time advances have been executed, the results are averaged, and our 
experience indicates that the time-splitting errors are significantly reduced. The 
partial advances accounting for non-diffusive terms are carried out by a standard 
Adams-Bashforth scheme, while the advances of diffusive terms is done by an 
efficient Alternating Direction Implicit (ADI) method (see Roache 1976). Details of 
the implementation are described in Lele (1985) (note two lines are inadvertently 
omitted from his figure A.4, which summarizes this part of the algorithm). 

The Poisson equation relating the stream function to the vorticity field is solved 
by using the direct Poisson solver developed a t  NCAR by Swartztrauber & Sweet 
(1975), which provides the stream-function field to machine accuracy. 

Our computer code was validated by solving a set of test problems which permit 
exact solutions, as well as known non-trivial fluid mechanical problems. The test 
problems include simple problems of diffusion, advection by a known velocity field, 
Rayleigh-Taylor instability (of a statically unstable density field) in various 
inviscid/viscous and non-diffusive/diffusive configurations, linear and nonlinear 
BBnard convection with simple boundary conditions, and double-diffusive convection 
with simple boundary conditions. The accuracy and convergence performance of the 
code were considered acceptable; details may be found in Lele (1985). 
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